The March for Science… and Politics?

This is a guest post by Anne Fausto-Sterling!

The January 21, 2017 Women’s March on Washington, DC was quite the eye-opener. I am not a naïve marcher, since my first such trek to Washington dates back some 60 years to the 10,000 strong 1958 Youth March on Washington for Integrated Schools. So I fully expected to see signs and slogans pledging solidarity with immigrants, Muslims, Jews, and women. I did not anticipate that the first signs I would see would be about science.

Editor’s note: Remember all those witty signs, way back when, ONLY MONTHS AGO…

Given this existential moment, when the very idea that there are facts and true things is under assault, perhaps this shouldn’t have surprised me. But still. As the geek at the party, inured to people announcing–right after being told that I am a biologist–that in high school they hated biology, I was fascinated. Participants in the March on Washington made it clear that the meaning of science itself is woven into our current political conflicts, and a group of scientists responded by announcing a March for Science, to be held on Earth Day– April 22, 2017. The organizers–an archeologist, a health educator, and a physiologist [Editor’s note: Can you believe I had to add in an Oxford comma here? That is the real scandal.]-–are not international science stars but rather educators and scholars who work “in the trenches”, and this is one interesting component of the march.

Indeed almost immediately the hashtags #ThisIsWhataScientistLooksLike and #ActualLivingScientist appeared on twitter and then on the March for Science Facebook page. Soon hundreds of moving portraits of working scientists materialized—some by the scientists themselves, some by children honoring their parents, some focusing on the human story, and many joyfully zeroing in on caterpillars, cheetahs, glaciers, molecules, and atoms. The resulting picture displays diversity in the scientific workforce–white, person of color, old, young, male, female, field biologist, theoretical physicist, from many different nationalities and in the many things we study. Putting human faces on science produces an inspiring montage. And what we investigate perfuses all aspects of human life and the natural world.

But humans, even—or perhaps especially–-scientists, are a quarrelsome species [editor’s note: I disagree!]. So when the organizers announced the goals and basic principles intended to guide and unify the March, a crack or two appeared in the growing wall of science. The organizers hope to unite marchers around a set of basic principles: science serves the common good, cutting edge science education is crucial to democracy, public outreach should be inclusive, and we should use science to make evidence-based policy and regulations that are in the public interest. The April 22nd March itself has five more focused goals:

  • To humanize science;
  • To partner with non-scientists;
  • To advocate for open, inclusive and accessible science;
  • To support scientists;
  • (and, perhaps most important of all) To affirm science as a democratic value.

These seem non-controversial to me [Editor’s note: Me too! But then, again, we are feminist scientists…], although there certainly are those who think that science is and ought to be an elite activity. But when organizers articulated specific Diversity Principles, supporting inclusion, diversity and equality in science and stating that citizens are best served when we build and sustain an inclusive scientific community, it was

Editor’s note: I like!

not the alt-right or climate deniers, but some very prominent scientists who objected. At the end of January 2017, psychologist Steven Pinker set scientists snarling at each other by tweeting: “Scientists’ March on Washington plan compromises its goals with anti-science PC/identity politics/hard-left rhetoric”. Nor is Pinker the only one to paint with the tar of anti-science, scientists who emphasize diversity and who think that scientists should use their talents to lessen inequality. Two recent publications, the first from evolutionary biologist Jerry Coyne and the second from a less well-known neuroscientist/science journalist Debra Soh strike a similar chord.

Coyne holds court on his blog “Why Evolution is True”, where, at the end of 2016, he posted a piece entitled “The Ideological Opposition to Biological Truth.” In it he did not attack creationism, ridicule Northern Kentucky’s extraordinary “Creation Museum”, or launch a jeremiad against climate deniers. Instead, like Pinker, he excoriated “the ideological left” for ignoring biological data that they supposedly believe conflicts with their leftist political preferences. Coyne offers two examples—the conflict about whether the human race is/is not a “real” biological entity, and conflicts over the evolution of “innate (e.g. genetically based) behavioral or psychological differences between human males and females.” To press his point on gender, Coyne starts with a generally accepted fact: in most (but not all!) primate groups males are physically larger than females. He provides evidence that this size difference derives from inter-male competition for females and that larger size provides a competitive advantage. As Coyne sees it, only ideologues or enemies of science (mostly misguided feminists) could possibly disagree with him.

His essay provoked a counter-attacking tweetstorm from Holly Dunsworth, an anthropologist at the University of Rhode Island. Coyne’s account of the evolution of size dimorphism, she writes, is simplistic and biased toward explanations which feature males while ignoring females. [Editor’s note: In case you’re new, this would be far from the first case of evolutionary scientists – or any scholars, really –  ignoring females/women/femininity; there is literally a book by renowned evolutionary anthropologist Sarah Blaffer Hrdy called “The Woman Who Never Evolved.”] Suppose, though, as a result of natural selection, that gestation, which is metabolically demanding, is more successful in smaller bodies. Pregnancy might limit growth. Indeed, it is possible that selection on women for small body size is an important force driving known sex differences in size. “Knowledgeable people,” writes Dunsworth “aren’t objecting to facts”…but to “biased story-telling” of the sort found in Coyne’s post. Dunsworth’s standpoint as a woman and a feminist leads led her to notice women and to think about how they form part of the evolutionary story. And this leads us back to the March for Science’s Diversity Principles. It is not just about being fair to previously underprivileged members of our society. It is that, unless we have scientists bringing diverse standpoints to the table of knowledge formation, the resulting science will be incomplete at best, and altogether wrong at worst.

In a recent op ed in the LA Times, Debra Soh similarly lit into a non-existent group she labeled “gender feminists.” [Editor’s note: When I heard this term, I laughed and laughed and laughed. It’s like the fake news of made-up labels.] The headline and lede give the message. Whoever these gender feminists are (and like Coyne she doesn’t name nor directly cite the scholarly work of the anti-science nemesis), they refuse to acknowledge the role of evolution in shaping the human brain. (The term “gender feminist” was invented by Christina Hoff Sommers in 1994 in her book Who Stole Feminism, which attacks “feminists who believe that “our society is best described as a patriarchy, a ‘male hegemony,’ a ‘sex/gender system’ in which the dominant gender works to keep women cowering and submissive”, as “gender feminism” [taken from Wikipedia].

This seemed to me to be such an outrageous accusation that I consulted a group of evolutionary psychologists who are inclined to validate Soh’s claims to see if they could name these anti-evolution feminist scientists. The best a listserv of over 100 active respondents could do in an extended interchange was identify one feminist psychologist who, in some of her writing, writes some sentences that with malice could be interpreted as supporting Soh’s account. [Editor’s note: Some scientists hate when you ask for evidence for their anti-feminist claims, because: irony.]

Such attacks present us with a conundrum. One side of an intra-science debate has charged the other with refusing to accept facts and data and thus with being anti-science and political. When launched at someone whose life’s work has been dedicated to the advancement of scientific knowledge and love of rational thought, these are truly fighting words. But even while squabbling with each other, both sides are horrified at creationism, anti-vaxers, climate deniers, and tobacco, oil and gas companies which claim (using paid scientists!) that their products and activities are harmless. How do we identify and counter the real science deniers while at the same time accepting that political differences also and often legitimately shape the conclusions of scientists who are passionately committed to producing reliable results using the tools of objective investigation?

One reason this is such a complex task is that science is porous. It is not always easy to tell when we have crossed some line between legitimate scientific critique and science denial. Obviously, as compellingly laid out in Naomi Oreskes’ Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming (Bloomsbury Press, 2010), the economic interests of large actors such as tobacco and pharmacy influence knowledge production as they seek to control public policies that might curtail the sale of their products. Sometimes, too, a special interest lobby successfully enforces ignorance about a topic. When this happens, it is not that results are doctored but that we refuse to obtain data needed to make sound policy. Science critic Robert Proctor coined the term “agnotology” to denote the study of culturally-induced ignorance. [Editor’s note: In the feminist science studies literature, this same approach is largely called “epistemologies of ignorance” and you could check out our post on it here.] Indeed, we are in a moment of agnosis so serious that scholars have set up guerrilla teams to save data that are rapidly being purged from US government science websites.

But even while science is molded from without, the attitudes and cultural perspectives of individual researchers also shape scientific inquiry. The social standpoint that you enter the lab with frames what questions you pose, how you pose them, the level of evidence you require before accepting a result, and how you interpret your findings. This is why, in order to have productive debates about many types of research, scientists themselves must learn how to acknowledge their differing standpoints.

Starting in the late 1970s and thinking and writing furiously especially in the 1980s and 1990s, feminist science studies scholars grappled mightily with the concept of scientific objectivity. If science was completely objective, the diversity of the scientific workforce shouldn’t matter. But (all male, all white) communities of scientists always found that women or people of color were biologically inferior while women and scientists of color refuted such claims. [Editor’s note: if I could do that fancy typed out ironic shrug emoticon sort of thing, I would! But it looks hard.] In an infamous example I cite in Myths of Gender (Basic Books: 1985), Darwin and others described as fact that women were more biologically variable and hence more unreliable and less suited for the public sphere than men. But in the early 20th Century, the (still) all white male science cabinet found that men were biologically more variable, and declared variability a virtue that, while it produced more men of inferior ability, it also meant that the extreme high-end geniuses were going to be men, not women. Many examples of this sort addressing women, people of color and the intertwining of race/sex theory can be found in older books such as Cynthia Eagle Russett’s Sexual Science: The Victorian Construction of Womanhood (Harvard: 1991) and newer ones such as Melissa Stein’s Measuring Manhood: Race and the Science of Masculinity 1830-1934 (University of Minnesota Press: 2015).

Biologists Ruth Bleier (Science and Gender: A Critique of Biology and Its Theories on Women, 1984), Ethel Tobach (Challenging racism & sexism: Alternatives to genetic explanations, Genes & Gender VII. The Feminist Press: 1994), and Ruth Hubbard (The Politics of Women’s Biology, 1990) led the way with critiques of biological theories about women. They opened intellectual doors that the philosophers, especially Sandra Harding (The Science Question in Feminism, 1984), Helen Longino (Science as Social Knowledge, 1990), and Elizabeth Potter (Gender and Boyle’s Law of Gases, 2001) stepped through. By the time (1988) that Donna Haraway wrote her still widely-read essay Situated Knowledges: the Science Question in Feminism and the Privilege of Partial Perspective,” a review engaging with Sandra Harding’s 1984 book, science studies scholars (see also Daston and Galison’s Objectivity: 2007) were heatedly debating the meaning of objectivity and attacking the idea that science dis-covers objective facts that lie passively awaiting revelation. Exploding the idea of objectivity gave way, in turn, to debates about strong and weak objectivity, standpoint, and situated knowledge.

It is the idea that objectivity is always partial, shaped by the collective standpoints of theorizing and investigating scientists, which feminist evolutionary biologists such as Dunsworth and primatologists such as Linda Fedigan (Primate Paradigms: Sex Roles and Social Bonds, University of Chicago Press: 1992) bring to debates about human evolution. At the heart of Coyne’s, Pinker’s, and Soh’s attacks on feminist resistance to their understandings of evolution and sex differences in the brain, and the resistance to seeing a March platform for inclusion and diversity as essential to the future of good science, is that they cling to an out-dated vision of the scientific process itself. Thus—figuratively speaking—Soh does not blush when she exhorts feminists and transgender activists to stand down and simply let science speak for itself. [Editor’s note: I’m curious how this would even work and I would like some answers! Because sometimes I yell at my data and IT DOES NOT EVEN RESPOND.] Nor does she acknowledge the many years of scholarship from Shapin and Schaffer’s Leviathan and the Air Pump: Hobbes, Boyle and the Experimental Life (Princeton: 1986), to Bruno Latour’s ground-breaking books all of which show that scientific facts emerge through a process of negotiation, theory and experiment and that their shape reflects the specific cultures and historical periods of their production. [Editor’s note: This is asking scientists critiquing feminist science studies to actually read feminist science studies or, put another way, collect evidence. How. Dare. You.]

Where, then, does this leave us? Even as scientists argue with each other about the nature of the enterprise which, quite apparently they deeply love—each in their own way–larger forces threaten empirical knowledge projects and decision making based on the best existing data and analysis. As I write on March 16, 2017, news is spreading about Donald Trump’s budget proposal. Agencies that fund scientific research—the NIH, NSF, EPA, NOAA, DOE, and more do not fare well. Proposed cuts would further the agnotology agenda by defunding research on climate change, rising sea levels, and the effects of pollution while interfering with beloved and productive basic research programs. On the inside, progressive scientists can legitimately struggle with their more cautious or conservative colleagues to push science towards the service of social justice, but at the same time progressive and conservative scientists need to unite to protect the enterprise as a whole.

Figuring out how to have substantive debates that engage different standpoints within the big science tent and without denouncing opponents as anti-science is not easy. Recently historian Alice Dreger tweeted “when the science march happens I plan to be with my fellow historians and sociologists of science in the ‘yes, but’ crowd.”: To which historian Ben Gross responded: “What do we want? Ans: Acceptance that science is a complex social process! When do we want it? Ans: After a well-researched historical discussion.” It is a tricky dance.

The March for Science is important. It demonstrates our numbers as well as our concern for the nation’s future. It provides a counter-message to the idea that scientists are haughty elites who do not care about the common welfare, and it creates a narrative, long forgotten, I am afraid, that science is essential to democracy and that part of our job description as scientists is education and explanation. Pinker is wrong. The political messages of the March for Science will strengthen our hand and create space for us to have our internal spats. And although it would be nice to disagree without calling each other mean names, perhaps that is too much to expect from #ActualLivingScientists.

Exploring Different Methods and Approaches to Doing Feminist Biomedical Science

As Heather Shattuck-Heidorn explains in her recent post, scientific researchers, particularly in the health sciences, are being required by funding institutions to consider the concepts sex and/or gender in their research. Despite the introduction of these requirements, as Sari van Anders [Editor’s note: Hi! that’s ME!] summarizes in her review of Johnson et al., (2014), there is still inconsistent use of the concepts across disciplines as many researchers continue to use gender as a proxy for sex and sex and/or gender to simply mean including women in research studies.

This led us to search the feminist science literature for some direction. We limited feminist science scholarship to feminist scientists and feminist science studies scholars in the fields of biomedicine and public health. These scholars explicitly indicate that they use feminist approaches to science or use feminist conceptions of gender, sex, race and/or ethnicity in their work. What methods have feminist scientists developed to do biomedical science differently? How do these methods improve scientific knowledge and understanding of the world? Using these questions to guide our work, we sought to synthesize the theoretical and methodological approaches in the feminist biomedical science literature.

In our paper[1], we categorize feminist approaches to biomedical science into three main approaches: strong objectivity, partial perspective, and gendered innovations. By grouping the literature into these categories, we identify and describe different ways of doing feminist biomedical science and the particular aspects of the scientific method that each feminist approach seeks to change and improve.

The strong objectivity framework draws on the work of feminist science philosopher Sandra Harding and argues that science can be more objective if researchers include diverse perspectives and subjects/ experiences (for a deeper explanation, see Sari’s post Is Subjectivity Biased [Editor’s note: I am glad someone finally noticed how deep I am.]) into their research designs. Feminist empiricist and feminist standpoint approaches offer methodological direction for feminist scientists looking to apply the strong objectivity framework [Editor’s note: after all, it’s hard to take theory into practice, so this is really important]. Feminist empiricists offer a way for scientists to think critically about the theories and concepts they will employ by applying feminist and/or antiracist concepts and theories to critically analyze research in their fields of interest. This allows researchers to identify critical flaws in previous research designs and thereby open up new opportunities for research. Feminist standpoint approaches offer a way for scientists to locate their subjects and account for interacting social factors produced by gendered and racialized environments. The work of feminist biologist Anne Fausto-Sterling, The Bare Bones of Sex and The Bare Bones of Race [Editor’s note: I don’t mean to brag, but I totally know Anne Fausto-Sterling AND Sandra Harding so basically I am famous], provides an example of research that falls under the strong objectivity framework. Fausto-Sterling identifies critical discrepancies in how researchers define and measure bone health among and between women and men and suggests using a dynamics systems approach to account for social, geographical, and historical environmental factors that shape sex/gender and racial differences in bone health. In other words, the strong objectivity framework uses feminist concepts and theories to think critically about hypotheses, data collection methods, and interpretations of results, and promotes the design more complex and rigorous research studies

The partial perspectives framework draws on the work of feminist science philosopher Donna Haraway [Editor’s note: I don’t really know Donna Haraway but we emailed once so, basically, we are BFFs] and encourages feminist scientists to go beyond exposing gender and racial assumptions and “bad science” to examine the partial perspectives of scientific researchers. The partial perspectives framework does not seek to provide a more objective or truer knowledge of the world but rather strives to achieve what Haraway terms “feminist objectivity”. In contrast to strong objectivity, feminist objectivity requires researchers to think reflexively about their research interests and locate their objects of study and in doing so, deconstruct the web of power relations that allows certain sexed, gendered, and raced bodies to be produced and naturalized. Feminist science scholars El-Haj (2007), Gannett (2004), and M’charek (2005, 2013) provide examples of research that falls under the partial perspectives framework. These scholars use examples from population geneticists, DNA forensics and medical practices to trace how “biologi­cal races” [Editor’s note: I put irony quotes around biological races because I think they belong there and also because you can “never” have “enough” irony “quotes”] have been re-constituted in and through these scientific technologies and practices. And so, the partial perspectives framework seeks to deconstruct fields of research even before researchers consider the concepts, theories, and data collection methods they will use to design their research and thereby creates conceptual space for new research possibilities.

Finally, the gendered innovations framework draws on the work of feminist science historian Londa Schiebinger [Editor’s note: I don’t know Londa Schiebinger at all but I have read her work so, um, well, I’ve got nothing] and argues that integrating feminist concepts such as sex and gender into scientific research will advance our understanding and produce more scientific innovations. The methodology of this framework draws largely on the work of feminist scientists working in the fields of public health and biomedicine that have proposed ways to integrate and operationalize the concepts of sex, gender, race and/or ethnicity into the research process. Feminist scientists such as Johnson et al. ( 2009), Kaiser (2012), Krieger (2003), Springer et al. (2012), Ritz et al. (2014), Ford and Airhihenbuwa (2010), Gravlee (2009), and Hankivsky (2012) offer practical guidance to researchers seeking to use these concepts. The cross-disciplinary collaboration required to do this work has the potential to foster a shared language and the creation of new ways of operationalizing these concepts (both the social and biomedical sciences; see Hird 2009). Basically, the gendered innovations approach introduces additional steps in the scientific research process so that researchers account for sex, gender, and other intersecting factors related to their research that they might not have captured otherwise.

The various feminist methods we identify in our paper are illustrated in Figure 1. There are areas of research that I’m sure we missed in and outside the field of biomedicine. This paper is by no means an exhaustive review but rather simply seeks to provide a starting point to discuss, refine, and name some of the different feminist methods for doing science differently. [Editor’s note: what an awesome figure!!].

[1] See: Sarah Singh and Ineke Klinge (2015) ‘Mining for Methods: A Review of the Theoretical and Methodological Contributions of Feminist Science Studies’, Freiburger Zeitschrift für GeschlechterStudien (fzg). 12 (2). Pg. 15-31.

Since I’m made of particles, I’m a particle physics expert!

There are many things I’m an expert on.  Here is a list:

  1. Weather. Why? Because I have experienced weather for all the years of my life.
  2. Existence. Why? Because not only have I experienced weather for all the years of my life, I have also existed for all those years too.
  3. Gravity. Why? Because do you see me flying off the earth? No.
  4. Milkshakes. Why? Because obviously.
  5. Lists. Why? Because I’m making one right now. And, I’ll add, I’ve made them before. A lot.
  6. House construction. Why? Because, apart from the years I lived in university residences or apartments, I’ve lived in houses. In fact, I’ve lived in a lot of houses. Have any of them fallen down on my head? No. Why? Because I’m an expert in house construction.
  7. Astronomy. Why? Because I have seen the stars and once I learned how to pick out Orion’s Belt. I even once wrote a poem that mentioned Orion’s Belt.
  8. Particle physics. Why? Because I am made of particles.
  9. This list could go on, ad infinitum (I am also an expert on Latin because I used that phrase without even looking it up).
Weather, which is something I’m an expert on.

Let’s be honest, it’s pretty easy to be an expert, right? OR IS IT?! (cue dramatic music!) It is remotely possible that I am being sarcastic or facetious (as if I know the difference) with my list above. Also, I’d like to make clear that as a child I thought there were two words: 1) facetious and 2) facetitious, the more detail-oriented version of the first (hence attention to all the facets). Now that we’ve cleared that up (phew!), let’s talk more about experts and expertise.

Here’s a funny fact: I actually am an expert and so are many of my friends. It’s kind of no big whoop to be an expert around these here parts, to be honest. Can you believe we’re such a bunch of bitches to actually call ourselves experts?! It doesn’t matter; we are. We all have PhDs, do research, and are internationally known (to rock the microphone) (just kidding, Rob Base & D.J. EZ Rock!). We’re not experts in everything. We have specific areas of expertise, even beyond being a bunch of bitches. For example, my areas of expertise include hormones, sexuality, feminist science, intimacy, gender/sex, sexual diversity, and other things. Who do I think I am? Mr. Big Stuff? Can you believe I have the nerve to call myself an expert?! It doesn’t actually take nerve. For me, it takes a Ph.D., an ongoing research and publishing program, and the respect of other experts. But, really, aren’t we all experts?

No.

We’re not all experts. Why not? Because experience doesn’t equal expertise (see my list above). It takes learning, critical thinking about your experience, weighing evidence and ideas, and exchange of ideas, among other things. Why am I talking about any of this anyway? Because, feminists and scientists (and, wow, definitely feminist scientists) often hear people question their expertise. Like, someone might say: I have gender, so basically I know as much about gender as a gender scholar. Someone else might say, I’ve had peeny-bageeny sex (that’s actually the Latin term; I know, because I’m an expert), so I’m pretty much a sexpert. Someone else might say, I’ve seen Black people, so I’m an expert on race. Or, I have a race, so I’m an expert on race! But even though the two words start similarly with ‘ex’, expertise and experience (no matter how broad or deep) are not the same things.

Do you need a PhD to be an expert? Nope. Why? Because I like to ask questions that have ‘no’ in their answers ever since someone told me to mix up my writing with longer and shorter sentences and ‘no’ is about as short a sentence can get. Also because you can have a lived experience that you do critically engage with. Like, having a gender does not make you an expert on gender or feminism. But, you don’t need a PhD in those topics to be an expert on them. Maybe you’ve spent a very significant portion of your life thinking about gender, talking about it, reading and learning about it, and developing your own insights on it that add value to the way people understand gender. You’re able to communicate things about gender that make it make sense to others. You’ve figured out a lot about it and have a good grasp on what other thinking people think about it. You could be an expert on it then. I give you permission. This might be more likely if your experiences don’t fall along the majority of other people. Why? Because. (Another short sentence! I win!) If you’re too busy living the status quo, you might not even realize it in the way that fish don’t know they’re swimming in water (I know, because the fish told me). If you’re being excluded because of your gender, you might just stop to think ‘why?’ and ‘how?’ Otherwise, you might have little reason to think closely about gender. This is something called ‘feminist standpoint theory,’ which makes the point that critical reflection on your position, especially a marginalized or ‘non-center’ position, provides for invaluable and unique insights.

The funny thing is that people tend to get what I’m saying about expertise when it comes to, say, physics. They know that, unlike item # 8 above, being made of particles doesn’t make you an expert on particle physics. But when it comes to other things – things like gender, race/ethnicity, sexuality – somehow this logic dissipates. How do I know? My partner is a theoretical physicist! Surprise! And when people meet my partner, they’re like ‘wow, you must be very smart.’ They see my partner as an expert. This never gets said to me and, so, yes, this whole post is really just for me to complain and blow off steam and be like I AM SMART TOO! Thanks! Bye! Just kidding! But, let me tell you something: in my presence, no one, and I mean NO ONE WHO IS NOT A PHYSICIST (except for my dad – who, like all dads – is a special case) has ever tried to convince my partner that they know more about physics than my partner does or that their take on a particular aspect of physics is more right than my partner’s is. No one ever says to my partner: but why call it physics? Guess how many people who have given feminism about one second of thought have tried to convince me, with total and complete sincerity, that we should change the name of feminism? I want to be like: HOW ABOUT WE CALL IT PHYSICS?!?! There are people who have literally never taken a course on feminism or gender, read a book on either, or even sat down and given the topics some thoughts who will, nevertheless, tell me – and, I would roughly guesstimate, ALL OTHER FEMINIST SCHOLARS AND EXPERTS IN THE ENTIRE WORLD (I’m an expert on guesstimating too) – that their views on gender and feminism, rooted in their deep thought of about one millisecond, are as expert as my own. Ironically, I’m a big fan of questioning experts, but I’m not a big fan of doing so out of a place of ignorance. I suppose I’m not a big fan of ignorance, now that I think about it. I am a big fan of ignoring, less so of igniting, and even less of ignominy. Just so we’re all clear.

Obviously, the point I’m trying to make here is that (a) I’m always right, (b) bow down, bitches (to quote Beyoncé), and also (c) I am an expert on lists (see item #5 above). But, really, it’s more that expertise isn’t something you get by dint of existing. Expertise is something you earn. Whether you’re a physicist (like me), a gender expert (like me), or an expert in house construction (like me).